扬帆出海APP
微信小程序
{{!completeInfo?'请完善个人信息':''}}
从2015年前的小模型,到2015年至今的规模竞赛,再到2022年以后更优、更迅捷、更经济的模型,以及当前杀手级应用的涌现。
摘要
生成式AI的崛起得益于先进的模型、海量数据和强大的计算能力。特别是transformers架构的引入,极大地推动了自然语言处理领域的发展。
生成式AI正在改变多个行业,包括社交媒体、游戏、广告、建筑、编程、平面设计、产品设计、法律、营销和销售等,这些领域都需要人类的原创性创作。
生成式AI的未来应用,包括智能和模型微调、外形规格、交互范式的变化,以及持续的品类领先地位。
尽管生成式AI取得了显著进展,但仍然面临挑战,如如何证明其价值、模型开发堆栈的尴尬期、以及如何塑造新的UI范式。同时,也探讨了生成式AI在不同领域的应用,如文案创作、专业领域写作助手、代码生成、艺术创作、游戏开发、媒体/广告和设计等。
生成式人工智能(AI)以其速度和成本效益著称,并且在某些领域,它的创作质量甚至超越了人类的手工创作。这一技术正在改变多个行业,包括社交媒体、游戏、广告、建筑、编程、平面设计、产品设计、法律、营销和销售等,这些行业都需要人类进行原创性创作。
下图说明了基本模型的未来进展以及可能发生的相关应用的时间表。
文案创作:随着对个性化网络和电子邮件内容的需求日益增长,以促进销售、市场营销策略和客户支持,语言模型成为了理想的应用工具。文案的简洁性和风格化特点,加上团队面临的时间和成本压力,预计将推动对自动化和增强型解决方案的需求。
专业领域写作助手:目前大多数写作助手都是通用型的;我们看到了为特定行业市场开发更精准的生成应用的机会,无论是法律合同撰写还是剧本创作。这些产品的优势在于针对特定工作流程的模型和用户体验(UX)设计的精细调整。
代码生成:现有的应用程序已经为开发者提供了强大的动力,提高了他们的工作效率:GitHub Copilot在安装了它的项目中生成了近40%的代码。但更大的机会可能在于为普通消费者开启编程的大门。学习提示可能成为终极的高级编程语言。
艺术创作:艺术史和流行文化的丰富世界现在都蕴含在这些大型模型中,使得任何人都能够自由探索那些以往需要一生才能掌握的主题和风格。
游戏开发:理想是使用自然语言创建可操作的复杂场景或模型;虽然这种最终状态可能还很遥远,但短期内有更多直接的选择更具可操作性,比如生成纹理和天空盒艺术。
媒体/广告:想象一下自动化代理工作并为消费者动态优化广告文案和创意的潜力。这里有很多机会生成多模式内容,将销售信息与互补的视觉效果配对。
设计:数字和物理产品的原型设计是一个劳动密集型的迭代过程。从粗略草图和提示生成高保真渲染已经成为现实。随着3D模型技术的出现,创成式设计流程将一直延伸到制造和生产——从文本到实物。你的下一个iPhone应用或运动鞋可能由机器设计。
社交媒体和数字社区:有没有使用生成工具表达自己的新方式?随着消费者学习在公共场合创作,像Midjourney这样的新应用程序正在创造新的社交体验。
未来的生成式 AI 应用程序会是什么样子?
Generative AI’s Act Two
此外,红杉资本还提供了一个LLM 开发人员堆栈,在生产中构建生成式 AI 应用程序时所需要的计算和工具供应商。
我们现在处于什么位置?生成式 AI 的价值问题
用户希望用 AI 让工作更轻松、工作成果更好,所以很多人涌向应用程序。
但是很多应用留存率不高,下图比较了 AI 优先应用程序在第 1 个月的移动应用留存率。
生成式 AI 应用的中位数为 14%(Character 和 “AI 陪伴” 类别除外),用户还没有在生成式 AI 产品中找到足够的价值来每天使用它们。
Generative AI’s Act o1
随着 OpenAI、Anthropic、Google 和 Meta 扩展其推理层并开发越来越强大的推理机器,会发生什么?我们会用一种模式来统治他们吗?
生成式 AI 市场开始时的一个假设是,一家单一的模型公司将变得如此强大和包罗万象,以至于它将包含所有其他应用程序。到目前为止,这个预测在两个方面是错误的。
首先,模型层存在大量竞争,SOTA 功能不断跨越。有可能有人通过广域自我博弈来不断自我提升并实现起飞,但目前我们还没有看到任何证据。恰恰相反,模型层是一场刀战,自上一个开发日以来,GPT-4 的每个代币价格下降了 98%。
其次,这些模型在很大程度上未能作为突破性产品进入应用层,ChatGPT 是一个明显的例外。现实世界是混乱的。伟大的研究人员没有愿望去了解每个可能的垂直领域中每个可能的函数的端到端工作流程的细节。他们停下来停留在 API 上,让开发者世界担心现实世界的混乱,这既有吸引力,又在经济上合理。应用程序层的好消息。
作为科学家,您为实现目标而计划和实施行动的方式与您作为软件工程师的工作方式大不相同。此外,作为不同公司的软件工程师,情况甚至有所不同。
随着研究实验室进一步突破水平通用推理的界限,我们仍然需要特定于应用程序或领域的推理来提供有用的 AI 代理。混乱的现实世界需要大量的特定于域和应用程序的推理,而这些推理无法在通用模型中有效编码。
进入认知架构,或者您的系统如何思考:接受用户输入并执行操作或生成响应的代码和模型交互流。
例如,在 Factory 的情况下,他们的每个 “droid” 产品都有一个自定义的认知架构,该架构模仿人类解决特定任务的思维方式,例如审查拉取请求或编写和执行迁移计划以将服务从一个后端更新到另一个后端。Factory Droid 将分解所有依赖项,提出相关的代码更改,添加单元测试并引入人工审查。然后,在获得批准后,在开发环境中对所有文件运行更改,如果所有测试都通过,则合并代码。就像人类可能做的那样——在一组离散的任务中,而不是一个通用的黑盒答案。
假设您想在 AI 中开展业务。您以堆栈的哪一层为目标?您想在 infra 上竞争吗?祝你好运,击败 NVIDIA 和超大规模公司。您想在模型上竞争吗?祝你好运击败 OpenAI 和 Mark Zuckerberg。您想在应用程序上竞争吗?祝你好运,击败企业 IT 和全球系统集成商。哦。等。这听起来其实很可行!
基础模型很神奇,但它们也很混乱。主流企业无法处理黑匣子、幻觉和笨拙的工作流程。消费者盯着空白的提示,不知道该问什么。这些都是应用层中的机会。
两年前,许多应用层公司被嘲笑为“只是 GPT-3 之上的包装器”。今天,这些包装器被证明是建立持久价值的唯一可靠方法之一。最初的“包装器”已经演变成“认知架构”。
应用层 AI 公司不仅仅是基础模型之上的 UI。远非如此。它们具有复杂的认知架构,通常包括多个基础模型,顶部具有某种路由机制、用于 RAG 的向量和/或图形数据库、确保合规性的护栏,以及模拟人类在工作流中思考推理方式的应用程序逻辑。
云过渡是软件即服务。软件公司成为云服务提供商。这是一个 $350B 的机会。
多亏了代理推理,AI 的过渡是服务即软件。软件公司将劳动力转化为软件。这意味着潜在市场不是软件市场,而是数万亿美元的服务市场。
出售作品意味着什么?Sierra 就是一个很好的例子。B2C 公司将 Sierra 放在他们的网站上与客户交谈。要完成的工作是解决客户问题。Sierra 按分辨率获得报酬。没有“座位”这样的东西。你有工作要做。Sierra 做到了。他们相应地获得报酬。
这是许多 AI 公司的真正北方。Sierra 受益于具有正常故障模式(升级到人工代理)。并非所有公司都如此幸运。一种新兴模式是首先部署为 Copilot(人在环),并使用这些代表来获得部署为 Autopilot 的机会(无人在环)。GitHub Copilot 就是一个很好的例子。
随着生成式 AI 的新兴推理能力,一类新的代理应用程序开始出现。
这些应用层公司采取什么形式?有趣的是,这些公司看起来与他们的云前辈不同:
云公司将目标锁定在软件利润池上。AI 公司将目标锁定在服务利润池上。
云公司出售软件(美元/席位)。AI 公司出售作品(美元/结果)
云公司喜欢自下而上,实现无摩擦的分发。AI 公司越来越多地采用自上而下的方式,采用高接触、高信任度的交付模式。
我们看到这些代理应用程序的新队列出现在知识经济的所有领域。以下是一些示例。
Harvey:AI 律师
Glean:AI 工作助手
工厂:AI 软件工程师
Abridge:AI 医学抄写员
XBOW:AI 渗透测试器
Sierra:AI 客户支持代理
通过降低提供这些服务的边际成本(与推理成本的直线下降保持一致),这些代理应用程序正在扩展并创造新的市场。
以 XBOW 为例。XBOW 正在构建一个 AI“渗透测试器”。“渗透测试”或渗透测试是公司为评估自己的安全系统而对计算机系统进行的模拟网络攻击。在生成式 AI 之前,公司仅在有限的情况下(例如,当需要合规时)雇用渗透测试人员,因为人工渗透测试成本高昂:这是一项由高技能人员执行的手动任务。然而,XBOW 现在正在演示基于最新推理 LLMs,它与最熟练的人类渗透测试者的性能相匹配。这使渗透测试市场成倍增加,并为各种形式和规模的公司提供了连续渗透测试的可能性。
作为投资者,我们将把周期花在哪里?资金部署在哪里?这是我们的快速了解。
基础设施
这是超大规模公司的领域。它是由博弈论行为驱动的,而不是微观经济学。对于风险投资家来说,这是一个可怕的地方。
模型
这是超大规模企业和金融投资者的领域。超大规模企业正在用资产负债表换取损益表,投资的资金将以计算收入的形式往返于他们的云业务。金融投资者被 “惊叹于科学 ”的偏见所扭曲。这些模型非常酷,这些团队令人印象深刻。微观经济学该死!
开发人员工具和基础设施软件
战略家不那么有趣,而风险投资家更有趣。在云过渡期间,在这一层创建了 ~15 家收入为 10 亿美元+ 的公司,我们怀疑 AI 也可能如此。
应用程序
风险投资最有趣的一层。在云过渡期间创建了 ~20 家收入为 10 亿美元+ 的应用层公司,在移动过渡期间创建了另外 ~20 家,我们怀疑这里也会如此。
原文链接:点击前往 >
文章作者: AIGC新知
版权申明:文章来源于 AIGC新知。该文观点仅代表作者本人,扬帆出海平台仅提供信息存储空间服务,不代表扬帆出海官方立场。因本文所引起的纠纷和损失扬帆出海均不承担侵权行为的连带责任,如若转载请联系原文作者。 更多资讯关注扬帆出海官网:https://www.yfchuhai.com/
{{likeNum}}
好文章,需要你的鼓励